Maximum likelihood estimation from fuzzy data using the EM algorithm
نویسندگان
چکیده
منابع مشابه
Maximum likelihood estimation from fuzzy data using the EM algorithm
A method is proposed for estimating the parameters in a parametric statistical model when the observations are fuzzy and are assumed to be related to underlying crisp realizations of a random sample. This method is based on maximizing the observeddata likelihood defined as the probability of the fuzzy data. It is shown that the EM algorithm may be used for that purpose, which makes it possible ...
متن کاملMaximum Log Likelihood Estimation using EM Algorithm and Partition Maximum Log Likelihood Estimation for Mixtures of Generalized Lambda Distributions
متن کامل
Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کاملMaximum likelihood estimation for tied survival data under Cox regression model via EM-algorithm.
We consider tied survival data based on Cox proportional regression model. The standard approaches are the Breslow and Efron approximations and various so called exact methods. All these methods lead to biased estimates when the true underlying model is in fact a Cox model. In this paper we review the methods and suggest a new method based on the missing-data principle using EM-algorithm that l...
متن کاملClustering Fuzzy Data Using the Fuzzy EM Algorithm
In this article, we address the problem of clustering imprecise data using finite mixtures of Gaussians. We propose to estimate the parameters of the mixture model using the fuzzy EM algorithm. This extension of the EM algorithm allows us to handle imprecise data represented by fuzzy numbers. First, we briefly recall the principle of the fuzzy EM algorithm. Then, we provide the update equations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fuzzy Sets and Systems
سال: 2011
ISSN: 0165-0114
DOI: 10.1016/j.fss.2011.05.022